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Abstract
Congruential pseudorandom number generators rely on good multipliers, that
is, integers that have good performance with respect to the spectral test. We pro-
vide lists of multipliers with a good lattice structure up to dimension eight and
up to lag eight for generators with typical power-of-two moduli, analyzing in
detail multipliers close to the square root of the modulus, whose product can be
computed quickly.
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1 INTRODUCTION

A multiplicative congruential pseudorandom number generator (MCG) is a computational process defined by a recurrence
of the form

xn = (axn−1) mod m,

where m ∈ Z is the modulus, a ∈ Z ∩ [1 ..m) is the multiplier, and xn ∈ Z ∩ [1 ..m) is the state of the generator after step n.
Such pseudorandom number generators (PRNGs) were introduced by Lehmer,1 and have been extensively studied. If at
each step we furthermore add a nonzero constant c ∈ Z ∩ [1 ..m), we obtain a linear congruential pseudorandom number
generator (LCG), with state xn ∈ Z ∩ [0 ..m):*

xn = (axn−1 + c) mod m.

Under suitable conditions on m, a, and c, sequences of this kind are periodic and their period is full, that is, m − 1 for
MCGs (c = 0) and m for LCGs (c ≠ 0). For MCGs, m must be prime and a must be a primitive element of the multiplicative
group of residue classes (Z∕mZ)× (i.e., its powers must span the whole group). For LCGs, there are simple conditions that
must be satisfied (see Knuth,3 §3.2.1.2, Theorem A).

*We remark that these denominations, by now used for half a century, are completely wrong from a mathematical viewpoint. The map x → ax is
indeed a linear map, but the map x → ax + c is an affine map:2 what we call an “MCG” or “MLCG” should called an “LCG” (this in fact happens in
some books) and what we call an “LCG” should be called an “ACG”. The mistake originated probably in the interest of Lehmer in (truly) linear maps
with prime moduli.1 Constants were added later to obtain large-period generators with nonprime moduli, but the “linear” name stuck (albeit some
authors are using the term “mixed” instead of “linear”). At this point it is unlikely that the now-traditional names will be corrected.
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For MCGs, when m is not prime one can look for sequences that have maximum period, that is, the largest possible
period, given m. We will be interested in moduli that are powers of two, in which case, if m ≥ 8, the maximum period is
m∕4, and the state must be odd (see Knuth,3 §3.2.1.2, Theorem B).

While MCGs and LCGs have some known defects, they can be used in combination with other pseudorandom number
generators (PRNGs) or passed through some output function that might lessen such defects. Due to their speed and
simplicity, as well as a substantial accrued body of mathematical analysis, they have been for a long time the PRNGs of
choice in programming languages.

In this article, we provide lists of multipliers for both MCGs and LCGs, continuing the line of work by L’Ecuyer in his
classic paper.4 The quality of such multipliers is usually assessed by their score in the spectral test, described below.

The search for good multipliers is a sampling process from a large space: due to the enormous increase in compu-
tational power in the last twenty years, we can now provide multipliers with significantly improved scores. In fact, for
multipliers of up to 35 bits we have now explored the sample space exhaustively.

We consider only generators with power-of-two moduli; this choice avoids the expensive modulo operation because
nearly all contemporary hardware supports binary arithmetic that is naturally carried modulo 2w for some word size w.
Such generators do have additional known, specific defects (e.g., the periods of the lowest bits are very short, and the flip
of a state bit will never propagate to lower bits), but there is a substantial body of literature on how to reduce or avoid
these defects. In particular, it is now well understood that LCGs of this kind should not be used in isolation, but rather as
components of composite (or combined) PRNGs.

Furthermore, in this article we pay special attention to small multipliers, that is, multipliers close to the square root
of the modulus m. For m = 22w, this means multipliers whose size in bits is w ± k for small k. As is well known, many
CPUs with natural word size w can produce with a single instruction, or two instructions, the full 2w-bit product of two
w-bit operands, which makes such multipliers attractive from a computational viewpoint.

Unfortunately, such small multipliers have known additional defects, which have been analyzed by Hörmann and
Derflinger,5 who provided experimental evidence of their undesirable behavior using a statistical test based on rejection.

One of the goals of this article is to deepen their analysis: while it is known that w-bit multipliers for LCGs with
power-of-two modulus 22w have inherent theoretical defects, we show that these defects are reduced as we add bits to the
multiplier, and we quantify this improvement by defining a new figure of merit based on the magnitude on the multiplier.
In the end, we provide tables of multipliers of w + k bits, where k is relatively small, with quality closer to that of full
2w-bit multipliers.

The main motivation for our search is the implementation of a new family of splittable PRNGs that will be the core
of the new package for pseudorandom number generation in Java 17.6 The generators combine a LCG with power-of-2
modulus with an F2-linear generator, and then apply a mixing function. In general, combination of PRNGs of different
types was advocated already in 1984 by Marsaglia,7 and this particular combination has been popular among programmers
at least since 1990, as recently unearthed by a reverse engineering8 of the well-known video game Super Mario World.
It has the useful property of updating in parallel two components which potentially use different subunits of the CPU,
beside using the combination of two different kind of generators to improve quality; L’Ecuyer and Granger–Piché have
studied in detail such combinations.9 In an effort to obtain a high-quality LCG component while minimizing CPU work,
we were led to the study of fast multipliers of good quality for the 128-bit case, for which, as we discuss in Section 3, using
(almost) half-width multipliers provides significant speed gains.

During the search for good multipliers, the authors have accumulated a large database of candidates, which is publicly
available for download, in case the reader is interested in looking for multipliers with specific properties. The software
used to search for multipliers has been made public domain. Both are available at https://github.com/vigna/CPRNG.

2 SPECTRAL FIGURES OF MERIT

For every integer d ≥ 2, the dimension, we can consider the set of d-dimensional points in the unit cube

Λd =
{(

x
m
,

f (x)
m

,
f 2(x)

m
, … ,

f d−1(x)
m

) |||x ∈ Z ∩ [0 ..m)
}

,

where

f (x) = (ax + c) mod m,
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F I G U R E 1 A 3D example of the hyperplanes generated by two LCGs with m = 128: a = 37 (left, f3 = 0.545562) or a = 29 (right,
f3 = 0.833359). Note the hyperplane structure of the multiplier with a low spectral score

is the next-state map of a full-period generator. This set is the intersection of a d-dimensional lattice with the unit cube (see
Knuth,3 §3.3.4.A). Thus, all points in Λd lie on a family of equidistant, parallel hyperplanes; in fact, there are at most
(d!m)1∕d such hyperplanes.10

The spectral test (introduced by Coveyou and Macpherson;11 see also Knuth,3 §3.3.4.G) examines the family with the
largest distance between adjacent hyperplanes: the smaller this largest interplane distance is, the more evenly the generator
fills the unit d-dimensional cube. Using this idea, the figure of merit for dimension d of an MCG or LCG is defined as

fd(m, a) = 𝜈d

𝛾
1∕2
d

d
√

m
,

where 1∕𝜈d is the largest distance between adjacent hyperplanes found by considering all possible families of hyperplanes
covering Λd. We will usually imply the dependency on the choice of m and a.

The definition of fd also relies on the Hermite constant 𝛾d for dimension d. For 2 ≤ d ≤ 8, the Hermite constant has
these values:

𝛾2 = (4∕3)1∕2, 𝛾3 = 21∕3, 𝛾4 = 21∕2, 𝛾5 = 23∕5, 𝛾6 = (64∕3)1∕6, 𝛾7 = 43∕7, 𝛾8 = 2.

For all higher dimensions except d = 24 only upper and lower bounds are known. Note that 1∕
(
𝛾

1∕2
d

d
√

m
)

is the smallest
possible such largest interplane distance (see Knuth,3 §3.3.4.E, equation (40)); it follows that 0 < fd ≤ 1.

In Figure 1 we plot in three dimensions Λ3 for two LCGs with m = 128. On the left, we consider the multiplier a = 37
with spectral score f3 = 0.545562; on the right, the multiplier a = 29 with spectral score f3 = 0.833359. It is evident how
the 3-dimensional points generated by the LCG with lower spectral score are arranged in a small number of hyperplanes,
and leave regions of unit cube empty, whereas the points generated by the LCG with higher spectral score fill the unit
cube more evenly.

The reason for expressing the largest interplane distance in the form of a reciprocal 1∕𝜈d is that 𝜈d is the length of the
shortest vector in the dual lattice Λ∗

d. The dual lattice consists of all vectors whose scalar product with every vector of the
original lattice is an integer. In particular, it has the following basis (see Knuth,3 §3.3.4.C):

(m, 0, 0, 0, … , 0, 0)
(−a, 1, 0, 0, … , 0, 0)
(−a2, 0, 1, 0, … , 0, 0)

⋮ ⋮

(−ad−2, 0, 0, 0, … , 1, 0)
(−ad−1, 0, 0, 0, … , 0, 1).
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446 STEELE and VIGNA

That is, Λ∗
d is formed by taking all possible linear combinations of the vectors above with integer coefficients. Note

that the constant c of an LCG has no role in the structure of Λd and Λ∗
d, and that we are under a full-period assumption.

The dual lattice is somewhat easier to work with, as its points have all integer coordinates; moreover, as we mentioned,
if we call 𝜈d the length of its shortest vector, the maximum distance between parallel hyperplanes covering Λd is 1∕𝜈d
(and, indeed, this is how the figure of merit fd is computed).

A deeper analysis can be obtained by applying the spectral test to sequences with lag 𝓁,12 that is, lattices generated by
sequences x, f 𝓁(x), f 2𝓁(x), … . We will use the characterizations proved by Entacher13 to apply the spectral test to such
sequences, too.

3 COMPUTATIONALLY EASY MULTIPLIERS

Multipliers smaller than
√

m have been advocated,14,15 in particular when the modulus is a power of two, say m = 22w,
because they do not require a full 2w-bit multiplication: writing x− and x− for the w lowest and highest bits, respectively,
of a 2w-bit value x (that is, x− = x mod 2w and x− = ⌊x∕2w⌋), we have

(ax) mod 22w =
(

ax− + a ⋅ 2wx−
)

mod 22w =
(

ax− + 2w ⋅ ax−
)

mod 22w.

The first multiplication, ax−, has a 2w-bit operand a and a w-bit operand x−, and in general the result may be 2w bits
wide; but the second multiplication, ax−, can be performed by an instruction that takes two w-bit operands and produces
only a w-bit result that is only the low w bits of the full product, because the modulo operation effectively discards the
high w bits of that product. Moreover, if the multiplier a = 2wa− + a− has a high part that is small (say, a− < 256) or of
a special form (for example, a− = j2n where j is 1, 3, 5, or 9), then the first multiplication may also be computed using
a faster method. Contemporary optimizing compilers know how to exploit such special cases, perhaps by using a small
immediate operand rather than loading the entire multiplier into a register, or perhaps by using shift instructions and/or
such instructions as lea (load effective address), which in the Intel 64-bit architecture may be used to compute x + jy on
two 64-bit operands x and y for j = 2, 4, or 8.16 And even if the compiler produces the same code for, say, a multiplier that
is (3∕2)w bits wide as for a multiplier that is 2w bits wide, some hardware architectures may notice the smaller multiplier
on the fly and handle it in a faster way.

Multiplication by a constant a of size w, that is, of the form a− (in other words, a− = 0), is especially simple:

a−x mod 22w =
(

a− x− + 2wa− x−
)

mod 22w.

Notice that the addition can be performed as a w-bit addition of the low w bits of a−x− into the high half of a− x−.
In comparison, multiplication by a constant a of size w + 1, that is, of the form 2w + a− (in other words, a− = 1),

requires only one extra addition:

((
2w + a−

)
x
)

mod 22w =
((

2w + a−
)

x− +
(
2w + a−

) (
x− ⋅ 2w)) mod 22w

=
(
2wx− + a− x− + 2w ⋅ a− x−

)
mod 22w =

(
a− x− + 2w ⋅ (x− + a− x−)

)
mod 22w.

Modern compilers know the reduction above and will reduce the strength of operations involved as necessary.
Even without the help of the compiler, we can push this idea further to multipliers of the form 2w+k + a, where k is a

small positive integer constant:

((
2w+k + a

)
x
)

mod 22w =
((

2w+k + a
)

x− +
(
2w+k + a

) (
x− ⋅ 2w)) mod 22w

=
(
2w+kx− + ax− + 2w ⋅ ax−

)
mod 22w =

(
ax− + 2w ⋅

(
2kx− + ax−

))
mod 22w.

In comparison to the (w + 1)-bit case, we just need an additional shift to compute 2kx−. In the interest of efficiency, it
thus seems interesting to study in more detail the quality of small multipliers.

In Figure 2 we show code generated by the clang compiler that uses 64-bit instructions to multiply a 128-bit value (in
registers rsi and rdi) by (whimsically chosen) constants of various sizes. The first example shows that if the constant is
of size 64, indeed only two 64-bit by 64-bit multiply instructions (one producing a 128-bit result and the other just a 64-bit

 1097024x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3030, W

iley O
nline L

ibrary on [22/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STEELE and VIGNA 447

F I G U R E 2 clang-generated Intel code for the multiplication part of a 128-bit LCG using multipliers of increasing size. The code
generated for more than 96 bits (not shown here) is identical to the 128-bit case

result) and one 64-bit add instruction are needed. The second example shows that if the constant is of size 65, indeed only
one extra 64-bit add instruction is needed. For constants of size 66 and above, more sophisticated strategies emerge that
use leaq (the quadword, that is, 64-bit form of lea) and shift instructions and even subtraction. In Figure 3 we show
three examples of code generated by clang for the ARM processor: since its RISC architecture17 can only load constant
values 16 bits at a time, the length of the sequence of instructions grows as the multiplier size grows. On the other hand,
note that the ARM architecture has a multiply-add instruction madd.

To verify whether the reduction in strength and code size has an impact on the speed of the generator, we have run
a number of microbenchmarks for the 128-bit case (our main motivation) on an Intel® Core™ i7-8700B CPU @3.20 GHz
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448 STEELE and VIGNA

F I G U R E 3 clang-generated ARM code for the multiplication part of a 128-bit LCG using multipliers of increasing size. Note how the
number of mov and movk instructions depends on the size of the multiplier

(Haswell) and on an AWS Graviton 2 processor based on 64-bit Arm Neoverse cores @2.5 GHz. We provide results for
both gcc 10.2.1 and clang 10.0.1. We disabled loop unrolling (to avoid different unrolling strategies for different func-
tions or by different compilers) and inlining (because it is the only safe way to guarantee that we are actually measuring
the whole next-state function, including loading of constants). We used the CPU governance tools, where available, to
stabilize the clock speed.

Table 1 contains the results of the benchmarks for the smallest and largest interesting sizes, showing clearly the advan-
tage of small multipliers. Intermediate results (not shown in the table) confirm the trend from faster to slower, albeit
sometimes the scheduler of one compiler makes a bad choice for a particular size and architecture. Note that the tim-
ings include the looping time and the function call time: thus, relative timing differences between the actual next-state
functions are larger than the relative differences between the displayed values.

We remark that different architectures might give different results, and that different compilers (and even different
releases of the same compiler) have different scheduling models. Thus, while smaller multipliers generally tend to allow
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STEELE and VIGNA 449

T A B L E 1 Microbenchmarks on different architectures
and compilers for the smallest and largest multiplier sizes in
the case of 128 bits of state. Timings are in nanosecond per
iteration of the next-state function. Relative standard
deviation on 10 repeats is below 1%

LCG

gcc clang

i7 ARM i7 ARM

64 bits 1.201 4.001 1.201 4.001

65 bits 1.441 4.001 1.306 4.001

128 bits 1.680 5.201 1.444 5.201

MCG

gcc clang

i7 ARM i7 ARM

64 bits 1.202 4.001 1.273 4.001

128 bits 1.299 5.201 1.438 5.201

a compiler to emit shorter and possibly weaker instructions, rerunning our benchmarks in a different setup might thus
give different results. The best practice is to benchmark a PRNG in the context of the application that consumes its output.

4 BOUNDS ON SPECTRAL SCORES

If the multiplier is smaller than the root of order d of the modulus, we can compute exactly the figure of merit fd:

Proposition 1. Consider a full-period LCG with modulus m and multiplier a. Then, for every d ≥ 2, if a < d
√

m we have
𝜈d =

√
a2 + 1, and it follows that

fd =
√

a2 + 1
𝛾

1∕2
d

d
√

m
.

A slightly weaker result with just an upper bound for fd is reported in Reference 12.

Proof. The length 𝜈d of the shortest vector of the dual lattice Λ∗
d can be easily written as

𝜈d = min
(x0,… , xd−1)≠(0,… ,0)

{√
x2

0 + x2
1 + … + x2

d−1
|||x0 + ax1 + a2x2 + … + ad−1xd−1 ≡ 0 mod m

}
, (1)

where (x0, … , xd−1) ∈ Zd, due to the simple structure of the basis of Λ∗
d (see Knuth,3 §3.3.4). Clearly, in general 𝜈d ≤√

a2 + 1, because (−a, 1, 0, 0, … , 0) ∈ Λ∗
d.†However, when a < d

√
m we have 𝜈d =

√
a2 + 1, because no vector shorter than√

a2 + 1 can fulfill the modular condition.
To prove this statement, note that a vector (x0, … , xd−1) ∈ Λ∗

d shorter than
√

a2 + 1 must have all coordinates smaller
than a in absolute value (if one coordinate has absolute value a, all other coordinates must be zero, or the vector would
have length at least

√
a2 + 1, so the vector cannot belong to Λ∗

d). Then, for every 0 ≤ j < d

||||||
j∑

i=0
xiai

|||||| ≤
j∑

i=0

|||xi
|||aj < aj+1 < m,

†This is what was shown in Reference 12, without the condition that a < d
√

m.
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450 STEELE and VIGNA

so the modular condition in (1) must be fulfilled by equality with zero. However, let t be the index of the last
nonzero component of (x0, … , xd−1) (i.e., xi = 0 for i > t): then, |||∑t−1

i=0xiai||| < at, whereas |xtat| ≥ at, so their sum cannot
be zero. ▪

Note that if m = ad, then the vector that is a in position d − 1 and zero elsewhere is in Λ∗
d, but by the proof above

shorter vectors cannot be, so

fd = a
𝛾

1∕2
d

d
√

m
= 1

𝛾
1∕2
d

.

Using the approximation
√

a2 + 1 ≈ a, this means that if a ≤
d
√

m then for 2 ≤ d ≤ 8, fd cannot be greater than approxi-
mately

(4∕3)−1∕4 ≈ 0.9306, 2−1∕6 ≈ 0.8909, 2−1∕4 ≈ 0.8409, 2−6∕10 ≈ 0.8122,
(64∕3)−1∕12 ≈ 0.7749, 4−3∕14 ≈ 0.7430, 2−1∕2 ≈ 0.7071,

for d = 2, … , 8. For d > 2 this is not a problem, as such very small multipliers are not commonly used. However, choosing
a multiplier that is smaller than or equal to

√
m has the effect of making it impossible to obtain a figure of merit close to

1 in dimension 2. Note that, for any d, as a drops well below d
√

m the figure of merit fd degenerates quickly; for example,
if a <

√
m∕2 then f2 cannot be greater than (4∕3)−1∕4∕2 ≈ 0.4653 (the fact that multipliers much smaller than

√
m were

unsatisfactory was noted informally already by Downham and Roberts14).
Nonetheless, as soon as we allow a to be even a tiny bit larger than

√
m, 𝜈2 (and thus f2) is no longer constrained:

indeed, if m = 22w, a (w + 1)-bit multiplier is sufficient to get a figure of merit in dimension 2 very close to 1 (larger than
0.998); see Table 2.

MCGs with power-of-two moduli cannot achieve full period: the maximum period is m∕4. It turns out that the lattice
structure, however, is very similar to the full-period case, once we replace m with m∕4 in the definition of the dual lattice.
Correspondingly, we have to replace d

√
m with d

√
m∕4 (see Knuth,3 §3.3.4, Exercise 20):

Proposition 2. Consider an MCG with power-of-two modulus m, multiplier a, and period m∕4. Then for every d ≥ 2 and
every a < d

√
m∕4 we have 𝜈d =

√
a2 + 1, and it follows that

fd =
√

a2 + 1
𝛾

1∕2
d

d
√

m∕4
.

T A B L E 2 A comparison of small LCG multipliers for m = 264. In the
32-bit case, f2 and 𝜆 are linearly dependent, and f2 is necessarily smaller
than approximately 0.9306. For sizes above 32 bits we show multipliers all
with almost perfect f2 (well above 0.99) but different 𝜆. The last column
shows the corresponding number of iterations of the
Hörmann–Derflinger test

Bits a f2 𝝀 H–D

32 0xfffeb28d 0.930586 1.00 6

0xcffef595 0.756102 0.81 4

33 0x1dd23bba5 0.998598 1.86 19

0x112a563ed 0.998387 1.07 7

34 0x3de4f039d 0.998150 3.87 72

0x2cfe81d9d 0.992874 2.81 46

35 0x78ad72365 0.995400 7.54 313

0x49ffd0d25 0.991167 4.62 109
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STEELE and VIGNA 451

T A B L E 3 A comparison of small MCG multipliers for m = 264. In
the 31-bit case, f2 and 𝜆 are linearly dependent, and f2 is necessarily
smaller than approximately 0.9306. For each size above 31 we show
multipliers with almost perfect f2 but different 𝜆. The last column shows
the corresponding number of iterations of the Hörmann–Derflinger test

Bits a f2 𝝀 H–D

31 0x7ffc9ef5 0.930509 0.50 2

0x672a3fb5 0.750046 0.40 1

32 0xef912f85 0.994558 0.94 4

0x89f353b5 0.997577 0.54 2

33 0x1f0b2b035 0.996853 1.94 22

0x16aa7d615 0.994427 1.42 11

34 0x3c4b7aba5 0.992314 3.77 81

0x2778c3815 0.998339 2.47 37

35 0x7d3f85c05 0.998470 7.83 354

0x40dde345d 0.996172 4.05 87

Note that Proposition 2 imposes limits on the figures of merit for (w − 1)-bit multipliers for 2w-bit MCGs, but does
not impose any limits on w-bit multipliers for 2w-bit MCGs. In Table 3, observe that the 31-bit multipliers necessarily
have figures of merit f2 smaller than (4∕3)−1∕4 ≈ 0.9306 (though one value for f2, namely 0.930577, is quite close), but for
multipliers of size 32 and greater we have been able to choose examples for which f2 is well above 0.99.

5 BEYOND SPECTRAL SCORES

Proposition 1 does not impose a bound on (w + 1)-bit multipliers, and indeed, as we remarked in the previous section,
one can find (w + 1)-bit multipliers whose spectral scores are similar to those of 2w-bit multipliers. We now show that,
however, on closer inspection, the spectral scores are not telling the whole story.

Hörmann and Derflinger5 studied multipliers close to the square root of the modulus for LCGs with 32 bits of state, and
devised a statistical test that makes generators using such multipliers fail: the intuition behind the test is that with such
multipliers there is a relatively short lattice vector s = (1∕m, a∕m) ∈ Λ2 that is almost parallel to the y axis. The existence
of this vector creates bias in pairs of consecutive outputs, a bias that can be detected by generating random variates from
a distribution using the rejection method: if at some point the density of the distribution increases sharply, the rejection
method will underrepresent certain parts of the distribution and overrepresent others.

We applied an instance of the Hörmann–Derflinger test to congruential generators (both LCG and MCG) with 64 bits
of state using a Cauchy distribution on the interval [−2 ..2). We divide the interval into 108 slots that contain the same
probability mass, repeatedly generate by rejection 109 samples from the distribution, and compute a p-value using a 𝜒2

test on the slots. We consider the number of repetitions required to bring the p-value is very close to zero‡ a measure of the
resilience of the multiplier to the Hörmann–Derflinger test, and thus a positive feature (that is, a larger number is better).

The results are reported in the last column of Tables 2 and 3. As we move from small to large multipliers, the number
of iterations necessary to detect bias grows, but among multipliers with the same number of bits there is a very large
variability.§

The marked differences have a simple explanation: incrementing the number of bits does not translate immedi-
ately into a significantly longer vector s. To isolate generators in which s is less pathological, we have to consider larger

‡More precisely, when the p-value returned by the Boost library implementation of the 𝜒2 test becomes zero, which in this case happens when the
p-value goes below ≈ 10−16.
§We also tested a generator with 128 bits of state and a 64-bit multiplier, but at that size the bias is undetectable even with a hundred times as many
(1010) slots.
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452 STEELE and VIGNA

multipliers, as ||s|| = √
a2 + 1∕m. In particular, we define the simple figure of merit 𝜆 for a full-period LCG as

𝜆 = ||s||
1∕

√
m

=
√

a2 + 1∕m

1∕
√

m
=

√
a2 + 1√

m
≈ a∕

√
m.

In other words, we measure the length of s with respect to the threshold 1∕
√

m of Proposition 1. In general, for a set of
multipliers bounded by B, 𝜆 ≤ B∕

√
m.

Note that because of Proposition 1, if a <
√

m

f2∕𝜆 =
√

a2 + 1
𝛾

1∕2
2

√
m

/√
a2 + 1√

m
= 𝛾

−1∕2
2 ≈ 0.9306,

that is, for multipliers smaller than
√

m the two figures of merit f2 and 𝜆 are linearly dependent. Just one additional bit,
however, makes the two figures of merit f2 and 𝜆 no longer linearly dependent (see the entries for 33-bit multipliers in
Table 2, as well as the entries for 32-bit multipliers in Table 3).

For MCGs with power-of-two modulus m, s = (4∕m, 4a∕m), and, in view of Proposition 2, we define

𝜆 = ||s||
1∕

√
m∕4

=
√

a2 + 1∕(m∕4)
1∕

√
m∕4

=
√

a2 + 1√
m∕4

≈ 2a∕
√

m

In Tables 2 and 3 we report a few small-sized multipliers together with the figures of merit f2 and 𝜆, as well as the num-
ber of iterations required by our use of the Hörmann–Derflinger test: larger values of 𝜆 (i.e., larger multipliers) correspond
to more resilience to the test.

6 POTENCY

Potency is a property of multipliers of LCGs: it is defined as the minimum s such that (a − 1)s is a multiple of the modulus
m. Such an s always exists for full-period multipliers, because one of the conditions for full period is that a − 1 be divisible
by every prime that divides m (when m is a power of two, this simply means that a must be odd).

Multipliers of low potency generate sequences that do not look very random: in the case mis a power of two, this is
very immediate, as a multiplier a with low potency is such that a − 1 is divisible by a large power of two, say, 2k. In this
case, the k lowest bits of ax are the same as the k lowest bits of x, which means that changes to the k lowest bits of the
state depend only on the fact that we add c. For this reason, one ordinarily chooses multipliers of maximum possible
potency,¶and since for full period if m is a multiple of four, then a − 1 must be a multiple of four, we have to choose a so
that (a − 1)∕4 is odd, that is, a mod 8 = 5.

Potency has an interesting interaction with the constant c, described for the first time by Durst18 in response to propos-
als from Percus and Kalos19 and Halton20 to use different constants to generate different streams for multiple processors. If
we take a multiplier a and a constant c, then for every r ∈ Z∕mZ the generator with multiplier a and constant (a − 1)r + c
has the same sequence of the first one, up to addition with r. Indeed, if we consider sequences starting from x0 and
y0 = x0 − r, we have#

yn = ayn−1 + (a − 1)r + c = a(xn−1 − r) + (a − 1)r + c = xn − r.

That is, for a fixed multiplier a, the constants c are divided into classes by the equivalence relation of generating the same
sequence up to an additive constant.

¶Note that “maximum possible potency” is a quite rough statement, because potency is a very rough measure when applied to multipliers that are
powers of primes: for example, when m = 22w a generator with a − 1 divisible by 2w (but not by 2w+1) and a generator with a − 1 divisible by 22w−1 have
both potency 2, but in view of the discussion above their randomness is very different. More precisely, here we choose to consider only multipliers
which leave unchanged that smallest possible number of lower bits.
#All remaining computations in this section are performed in Z∕mZ.
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STEELE and VIGNA 453

How many classes do exist? The answer depends on the potency of a, as it comes down to solving the modular equation

c′ − c = (a − 1)r.

If a has low potency, this equation will be rarely solvable because there will be many equivalence classes: but for the
specific case where m is a power of two and a mod 8 = 5, it turns out that there are just two classes: the class of constants
that are congruent to 1 modulo 4, and the class of constants that are congruent to 3 modulo 4. All constants in the first
class yield the sequence xn = axn−1 + 1, up to an additive constant, and all constants in the second class yield the sequence
xn = axn−1 − 1, up to an additive constant. It follows that if one tries to use three (or more) different streams, even if one
chooses different constants for the streams, at least two of the streams will be correlated.

If we are willing to weaken slightly our notion of equivalence, in this case we can extend Durst’s considerations: if we
consider sequences starting from x0 and y0 = −x0 + r, then

yn = ayn−1 − ((a − 1)r + c) = a(−xn−1 + r) − (a − 1)r − c = −xn + r.

Thus, if we consider the equivalence relation of generating sequences that are the same up to an additive constant and
possibly a sign change, then all sequences generated by a multiplier a of maximum potency for a power-of-two modulus
m are the same, because to prove equivalence we now need to solve just one of the two modular equations

c′ − c = (a − 1)r and c′ + c = (a − 1)r,

and while the first equation is solvable when the residues of c and c′ modulo 4 are the same, the second equation is
solvable when the residues are different.

All in all, if one strives for a generator of higher quality (i.e., maximum potency), as we will do in Section 8, changing
just the additive constant will yield generators that are identical modulo an additive constant, and possibly a sign change.
As a result, changing the additive constant to generate multiple streams is a strategy to be avoided, unless the output of
the LCG is significantly mixed or combined with further sources of pseudorandomness.

7 USING SPECTRAL DATA FROM MCGS

The case of MCGs with power-of-two modulus is different from that of LCGs because the maximum possible period is
m∕4 (see Knuth,3 §3.2.1.2, Theorem C). Thus, there are two distinct orbits (remember that the state must be odd). The
nature of these orbits is, however, very different depending on whether the multiplier is congruent to 5 modulo 8 or to 3
modulo 8: let us say such multipliers are of type 5 and type 3, respectively.

For multipliers of type 5, each orbit is defined by the residue modulo 4 of the state (i.e., 1 or 3), whose value depends
on the second-lowest bit (this is a consequence of the fact that multipliers of type 5 do not change the two lowest bits).
Thus, the remaining upper bits (above the second) go through all possible m∕4 values. More importantly, the lattice of
points described by the upper bits is simply a translated version of the lattice Λd associated with the whole state, so the
figures of merit we compute on Λ∗

d describe properties of the generator obtained by discarding the two lowest bits from
the state. Indeed, for every MCG of type 5 there is an LCG with modulus m∕4 that generates “the same sequence” if the
two low-order bits of every value produced by the MCG are ignored (see Knuth,3 §3.2.1.2, Exercise 9).

For multipliers of type 3, instead, each orbit is defined by the residue modulo 8 of the state: one orbit alternates between
residues 1 and 3, and one orbit alternates between 5 and 7 (because multipliers of type 3 always leave the lowest bit and
the third-lowest bit of the state unchanged). In this case, there is no way to use the information we have about the lattice
generated by the whole state to obtain information about the lattice generated by the part of state that is changing; indeed,
there is again a correspondence with an LCG, but the correspondence involves an alternating sign (see Knuth,3 §3.2.1.2,
Exercise 9). For this reason, we (like L’Ecuyer4) will consider only MCG multipliers of type 5.

Note that a and−a mod m = m − a have different residue modulo 8, but the same figures of merit (see Knuth,3 §3.2.1.2,
Exercise 9). Moreover, in the MCG case the lattice structure is invariant with respect to inversion modulo m, so for each
multiplier its inverse modulo m has again the same figures of merit. In the end, for each multiplier a of maximum period
m∕4 there are three other related multipliers a−1 mod m, (−a) mod m and (−a−1) mod m with the same figures of merit;
of the four, two are of type 3, and two of type 5. Therefore there is little lost in studying only multipliers of type 5.
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454 STEELE and VIGNA

8 SEARCH STRATEGY

For LCGs, only multipliers a such that a mod 8 is either 1 or 5 achieve full period (see Knuth,3 §3.2.1.2, Theorem A),
but we (like L’Ecuyer) consider only the case of maximum potency, that is, the case when a mod 8 is 5. For MCGs, as we
already discussed in Section 7, we consider only multipliers of type 5. In the end, therefore, we consider in both cases
(though for different reasons) only multipliers whose residue modulo 8 is 5.

Following a suggestion in a paper by Entacher, Schell, and Uhl21 and in the associated code,|| we compute the figures
of merit from f2 to f8 using the implementation of the ubiquitous Lenstra–Lenstra–Lovász basis-reduction algorithm22

provided by Shoup’s NTL library.23 For m = 264 and m=128 we recorded in an output file all tested multipliers whose min-
imum spectral score is at least 0.70 (we used a lower threshold for m = 232). Overall we sampled approximately 6.5 × 1011

multipliers, enough to ensure that for each pair of modulus and multiplier size reported, we recorded at least one million
multipliers. (In several cases we recorded as many as 1.5 million or even two million multipliers.) As a sanity check, we
also used the same software to test multipliers of size 63 for LCGs with m = 2128; as expected, in view of Proposition 1 and
its consequences, a random sample of well over 1010 63-bit candidates revealed none whose minimum spectral score is at
least 0.70.

In theory, the basis returned by the algorithm is only necessarily made of shortest vectors, but using a precision
parameter 𝛿 = 1 − 10−9 we found only very rarely a basis that was not made of such vectors: we checked all multipliers
we selected using the LatticeTester tool,**which performs an exhaustive search after basis-reduction preprocessing, and
almost all approximated data we computed turned out to be exact; just a few cases (usually in high dimension) were
slightly off, which simply means that we spuriously stored a few candidates with minimum below 0.70. A similar strategy
was also used by the LatMRG software.24

Besides half-width and full-width multipliers, we searched for multipliers with up to two bits more than half-width
for m = 232 and m = 264, and up to seven bits more than half-width for m = 2128, as well as multipliers of three-fourths
width (24 bits for m = 232, 48 bits for m = 264, 96 bits for m = 2128), because these are experimentally often as fast as
smaller multipliers. Additionally, we provide 80-bit multipliers for m = 2128 because such multipliers can be loaded by
the ARM processor with just five instructions, and on an Intel processor one can use a multiply instruction with an
immediate 16-bit value.

For small multipliers, we try to find candidates with a good 𝜆: in particular, we require that the second-most-significant
bit be set. For larger multipliers, we consider only spectral scores, as the effect of a good 𝜆 becomes undetectable. Since
when we consider (w + c)-bit multipliers we select candidates larger than 2w+c−1, we have always 2c−1 ≤ 𝜆 ≤ 2c for LCGs
and 2c ≤ 𝜆 ≤ 2c+1 for MCGs.

9 SELECTION

We will now describe our selection criteria for the candidates computed during the search phase. For each mul-
tiplier, we considered initially figures of merit up to dimension 8, that is, from f2 to f8, both for the standard
spectral test and for a lagged spectral test up to lag eight (for lack of space, in our tables we show only the
five unlagged scores f2 through f6). This procedure gives us 56 scores associated with each multiplier; criteria to
summarize them and propose a good multiplier are then a question of taste and personal preference. Here, we
decided to use the lagged scores to discard candidates with minimum lagged score (over all lags and dimension)
below the first quartile (i.e., we discard three-fourths of the candidates). This approach eliminates candidates with a
mediocre lagged score, but leaves us with a large pool from which to optimize the figures of merit from the standard
spectral test.

Finally, even if our goal is to optimize figures of merit in low dimensions, to avoid pathological behav-
ior we furthermore computed the 24 additional (nonlagged) figures of merit f9, f10, … , f32 and we discarded
a multiplier if a figure of merit up to dimension 32 was below the threshold 0.5 (almost all are in the range
0.6 − 0.8).

When examining the figures of merit of the spectral test up to dimension d, typically multipliers are compared by their
minimum spectral score (up to dimension d), which is given by the minimum figure of merit over dimensions 2 through

||https://web.archive.org/web/20181128022136/http://random.mat.sbg.ac.at/results/karl/spectraltest/
**https://github.com/umontreal-simul/latticetester
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d. L’Ecuyer’s paper4 uses the notation Md(m, a) for this aggregate score for a generator with modulus m and multiplier a.
We prefer to distinguish the minimum spectral scores of LCGs and MCGs, because the figures of merit fd are computed
differently for the two kinds of generator when the modulus is a power of two: we use the notation

ℳ+
d (m, a) = min

2≤i≤d
fi(m, a),

to denote the minimum spectral score up to dimension d for an LCG, and we use the notation ℳ∗
d(m, a) to denote the

analogous score for an MCG. The use of the minimum spectral score seems to have originated in the work of Fishman
and Moore,25 where, however, no motivation for this choice is provided.

For small sets of multipliers, the minimum score does not pose particular problems. However, once we have to
select among a large database of candidates it sometimes sports pathological behavior. Let us consider the following two
multipliers for a 64-bit LCG and their associated scores from f2 to f8:

0xe2e19bb27190da6d 0.791216 0.771300 0.791569 0.777944 0.773526 0.777463 0.766073,
0xe73d20db8e96d2cd 0.941271 0.883251 0.854317 0.825078 0.803654 0.781546 0.766043.

Because the f8 score of the first multiplier, which is the minimum, is larger than the f8 score of the second multiplier,
which is again the minimum, the minimum criterion would choose the first multiplier. This, clearly, has no mathematical
or empirical basis: the second multiplier has much better scores for f2 through f7, and the difference between the f8 scores,
in the fifth decimal place, is entirely negligible.

To avoid such pathological behavior we use the following approach: first of all, we consider as equivalent all multipliers
whose minimum score is in the first millile of our database, as the difference between the scores of such multipliers is
practically negligible. Other criteria are possible, such as a threshold on the difference with the best score in database,
but a quantile criterion has the advantage of being applicable uniformly on different data sets.

Within the first millile of minimum score, we then consider a secondary aggregate figure of merit:

Definition 1. Let fi(m, a), 2 ≤ i ≤ d, be the figures of merit of an LCG multiplier a with modulus m. Then, the harmonic
spectral score (up to dimension d) of a with modulus M is given by

ℋ +
d (m, a) = 1

Hd−1

∑
2≤i≤d

fi(m, a)
i − 1

,

where Hn =
∑n

k=1
1
k

is the n-th harmonic number.†† Analogously, the notation ℋ ∗
d (m, a) denotes the harmonic spectral

score (up to dimension d) for an MCG multiplier a with modulus m.

The effect of the harmonic spectral score is to weight each dimension progressively less, using weights
1, 1∕2, 1∕3, … , 1∕(d − 1), and the sum is normalized so that the score is always between 0 and 1. In the example above, the
harmonic score of the first multiplier is 0.782507, whereas that of the second multiplier is 0.877164. Other within-millile
criteria are possible (e.g., arithmetic mean, harmonic mean): however, Knuth argues that the importance of figures of
merit decreases with dimension, and that “the values of 𝜈t for t ≥ 10 seem to be of no practical significance whatso-
ever” (see Knuth,3 §3.3.4); similarly, L’Ecuyer and Granger–Piché, having to choose the congruential component for a
combined generator9 (our main motivation), suggest to consider only scores up to dimension eight. We thus prefer to
privilege low dimensions.

To summarize: as a result of this multistep selection process, every multiplier we recommend has:

• a minimum lagged score in the top quartile of our original sample set (from the search procedure described in
Section 8);

• no spectral score f9, f10, f11, … , f32 below 0.5;
• a minimum spectral score ℳ+

8 (m, a) or ℳ∗
8 (m, a) that is in the first millile (top 0.1%) of remaining candidates;

• among all candidates in that first millile, the best harmonic score ℋ +
8 (m, a) or ℋ ∗

8 (m, a).

††We have used script letters ℳ and ℋ to denote spectral scores so that the harmonic spectral score function ℋ8 will not be confused with the
harmonic number H8.
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456 STEELE and VIGNA

T A B L E 4 Good multipliers for LCGs with m = 232

Bits 𝓜+
8 (m,a) 𝓗+

8 (m,a) a f2 f3 f4 f5 f6 𝝀

16 0.6690 0.7444 0xd9f5 0.7923 0.7541 0.6869 0.6690 0.6919 0.85

17 0.6403 0.6588 0x1dab5 0.6652 0.6468 0.6555 0.6455 0.6403 1.85

18 0.6988 0.7362 0x3d575 0.7304 0.7186 0.7855 0.7422 0.7222 3.83

24 0.7224 0.8371 0xc083c5 0.9397 0.8395 0.7224 0.7268 0.7976 192.51

32 0.7591 0.8038 0x915f77f5 0.7900 0.8641 0.7932 0.7713 0.8325 3.7 × 104

T A B L E 5 Good multipliers for MCGs with m = 232

Bits 𝓜∗
8 (m,a) 𝓗∗

8 (m,a) a f2 f3 f4 f5 f6 𝝀

15 0.6814 0.7502 0x72ed 0.8356 0.6814 0.6978 0.7213 0.6909 0.90

16 0.6610 0.7462 0xecc5 0.7066 0.9008 0.6610 0.7483 0.7002 1.85

17 0.6623 0.7497 0x1e92d 0.8419 0.6851 0.6770 0.7050 0.6623 3.82

18 0.6814 0.8266 0x39e2d 0.9021 0.8643 0.7004 0.8121 0.7936 7.24

24 0.7064 0.8344 0xe47135 0.9293 0.8651 0.7064 0.7519 0.7635 456.88

32 0.7470 0.8649 0x93d765dd 0.9633 0.8674 0.7774 0.7826 0.7929 7.6 × 104

T A B L E 6 Good multipliers for LCGs with m = 264

Bits 𝓜+
8 (m,a) 𝓗+

8 (m,a) a f2 f3 f4 f5 f6 𝝀

32 0.7571 0.8364 0xf9b25d65 0.9077 0.8252 0.7882 0.7762 0.7837 0.98

33 0.7525 0.8105 0x18a44074d 0.8694 0.7932 0.7786 0.7525 0.7609 1.54

34 0.7573 0.8405 0x3af78c385 0.9299 0.8115 0.7843 0.7700 0.7573 3.69

48 0.7590 0.8821 0xc2ec33ef97a5 0.9947 0.8554 0.8299 0.7617 0.7887 5.0 × 104

64 0.7602 0.8992 0xd1342543de82ef95 0.9586 0.9375 0.8708 0.8223 0.8204 3.5 × 109

T A B L E 7 Good multipliers for MCGs with m = 264

Bits 𝓜∗
8 (m,a) 𝓗∗

8 (m,a) a f2 f3 f4 f5 f6 𝝀

32 0.7490 0.7905 0xe817fb2d 0.8268 0.7765 0.7803 0.7535 0.7490 1.81

33 0.7630 0.8401 0x1e85bbd25 0.8499 0.9149 0.8147 0.7971 0.7899 3.82

34 0.7524 0.8670 0x34edd34ad 0.9749 0.8506 0.7789 0.8145 0.7550 6.62

48 0.7722 0.8894 0xbdcdbb079f8d 0.9855 0.8937 0.7973 0.8466 0.7867 9.7 × 104

64 0.7584 0.8797 0xf1357aea2e62a9c5 0.9705 0.8444 0.8415 0.7928 0.8202 8.1 × 109

We remark that on smaller sets of multipliers (e.g., 16-bits multipliers for 32-bit generators) the first millile contains
just one element; in such cases the harmonic score is not involved in the selection.

Tables 4–9 contain the best (by the criterion above) multipliers we found, and other similar multipliers are
available online. All multipliers we provide are Pareto optimal for our dataset: that is, for each type, modu-
lus, and size there is no other multiplier we examined that is at least as good on both scores, and strictly
improves one.
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T A B L E 8 Good multipliers for LCGs with m = 2128

Bits 𝓜+
8 (m,a) 𝓗+

8 (m,a) a f2 f3 f4 f5 f6 𝝀

64 0.7596 0.8630 0xfc0072fa0b15f4fd 0.9161 0.9285 0.7850 0.8158 0.7596 0.98

65 0.7752 0.8882 0x1ed5301a365eced85 0.9682 0.9138 0.8134 0.8192 0.8036 1.93

66 0.7579 0.8810 0x3cf736df8904b7285 0.9869 0.8444 0.8468 0.8096 0.7698 3.81

67 0.7592 0.8982 0x77808d182e9136c35 0.9721 0.9324 0.8682 0.8175 0.7995 7.47

68 0.7774 0.8656 0xc0c5c8bdde1eae3c5 0.9675 0.7774 0.8283 0.8138 0.8222 12.05

69 0.7739 0.8665 0x1ffc98ea48aaa4c915 0.9852 0.7763 0.8094 0.8298 0.7739 31.99

70 0.7551 0.8845 0x3d0e4c1575cfe11085 0.9768 0.9173 0.7864 0.7937 0.7959 61.06

71 0.7603 0.8844 0x774236e651b3d34775 0.9696 0.9168 0.8108 0.7603 0.7662 119.26

72 0.7592 0.8830 0xce12be0ad9384349d5 0.9548 0.9322 0.8139 0.7592 0.8244 206.07

80 0.7651 0.8642 0xe14777aac3fc617a34ad 0.9779 0.8050 0.7993 0.7744 0.8040 5.8 × 104

96 0.7771 0.8903 0xdfe1956283473c8e63b49445 0.9599 0.9367 0.8193 0.8042 0.8205 3.8 × 109

128 0.7650 0.8878 0xdb36357734e34abb0050d0761fcdfc15 0.9849 0.8546 0.8084 0.8527 0.8209 1.6 × 1019

T A B L E 9 Good multipliers for MCGs with m = 2128

Bits 𝓜∗
8 (m,a) 𝓗∗

8 (m,a) a f2 f3 f4 f5 f6 𝝀

63 0.7547 0.8649 0x7e91d554f7f50a65 0.9202 0.9217 0.7759 0.8492 0.7783 0.99

64 0.7550 0.8819 0xdefba91144f2b375 0.9502 0.9370 0.7973 0.8203 0.7997 1.74

65 0.7558 0.8722 0x1f3e451e8032e03cd 0.9951 0.8408 0.7558 0.7725 0.8285 3.91

66 0.7734 0.8722 0x32afe9369a79aaf95 0.9180 0.8897 0.8898 0.8057 0.8011 6.34

67 0.7578 0.8648 0x79ee767d1056fa525 0.9613 0.8551 0.8076 0.7891 0.7578 15.24

68 0.7622 0.8752 0xee8f25664dcc71505 0.9447 0.8999 0.8044 0.8417 0.7984 29.82

69 0.7570 0.8728 0x1c9539b04653db147d 0.9577 0.8853 0.8133 0.8074 0.7758 57.17

70 0.7575 0.8725 0x3a6de753da52a34cdd 0.9645 0.9030 0.7793 0.7827 0.7575 116.86

71 0.7658 0.8753 0x654421647a648c4eb5 0.9324 0.9166 0.8357 0.8236 0.7658 202.53

72 0.7627 0.8693 0xeee2a2bb3ec40a671d 0.9875 0.8125 0.7791 0.8248 0.7627 477.77

80 0.7610 0.8727 0xd49d0e59c6b198994025 0.9591 0.8845 0.8281 0.7708 0.7860 1.1 × 105

96 0.7566 0.8721 0xb540ecedd0778e2d651421a5 0.9654 0.8510 0.8244 0.8128 0.7875 6.1 × 109

128 0.7571 0.8799 0xaadec8c3186345282b4e141f3a1232d5 0.9869 0.8706 0.8056 0.7838 0.7571 2.5 × 1019

10 CONCLUSIONS

We have presented new tables of multipliers for LCGs and MCGs from size 32 bits up to size 128 bits. Based on the
observation that smaller multipliers can lead to faster generators, we provide multipliers of different bit sizes. Beside
using the standard minimum criterion up to dimension eight, to avoid pathological behavior in the presence of several
multipliers with practically indistinguishable minima we introduced a new disambiguation score, the harmonic score,
which privileges low dimensions. While we optimize for lower dimensions, we use thresholding to avoid multipliers
that are pathological in high dimension or in lagged sequences. The complete database of multipliers from our search
procedure (prior to the specific selection procedure that we applied to produce the tables) is available online.

We remark that good spectral scores are known to be correlated with success in certain statistical tests, and in
particular with the collision test (see Knuth,3 §3.3.2.I) and the birthday-spacing test (see Knuth,3 §3.3.2.J). We have
verified empirically that in several cases our multipliers provide LCGs that in isolation perform better than previous
proposals (e.g., better than Knuth’s MMIX LCG3 with multiplier 6364136223846793005). However, there is currently no
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458 STEELE and VIGNA

mathematical theory that can prove whether these improvements percolate to the output once other PRNGs are mixed
in, or when using output functions with good mixing properties, as in the LXM case. Improving measurably the quality
of a component is a best practice in software design, in particular if the improvement comes at no cost, as in this case. We
leave to future work the development of theoretical or empirical tests that can detect the improvement in spectral scores
in the LCG component of a combined generator.
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